A scalar nonlocal bifurcation of solitary waves for coupled nonlinear Schrödinger systems

نویسندگان

  • Alan Champneys
  • Jianke Yang
چکیده

An explanation is given for previous numerical results which suggest a certain bifurcation of ‘vector solitons’ from scalar (single-component) solitary waves in coupled nonlinear Schrödinger (NLS) systems. The bifurcation in question is nonlocal in the sense that the vector soliton does not have a small-amplitude component, but instead approaches a solitary wave of one component with two infinitely far-separated waves in the other component. Yet, it is argued that this highly nonlocal event can be predicted from a purely local analysis of the central solitary wave alone. Specifically the linearisation around the central wave should contain asymptotics which grow at precisely the speed of the other-component solitary waves on the two wings. This approximate argument is supported by both a detailed analysis based on matched asymptotic expansions, and numerical experiments on two example systems. The first is the usual coupled NLS system involving an arbitrary ratio between the self-phase and cross-phase modulation terms, and the second is a coupled NLS system with saturable nonlinearity that has recently been demonstrated to support stable multi-peaked solitary waves. The asymptotic analysis further reveals that when the curves which define the proposed criterion for scalar nonlocal bifurcations intersect with boundaries of certain local bifurcations, the nonlocal bifurcation could turn from scalar to non-scalar at the intersection. This phenomenon is observed in the first example. Lastly, we have also selectively tested the linear stability of several solitary waves just born out of scalar nonlocal bifurcations. We found that they are linearly unstable. However, they can lead to stable solitary waves through parameter continuation. Mathematics Subject Classification: 35Q55, 74J35, 37Gxx.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collisional Dynamics of Solitons in the Coupled PT Symmetric Nonlocal Nonlinear Schrödinger Equations

We investigate the focussing coupled PT symmetric nonlocal nonlinear Schrödinger equation employing Darboux transformation approach. We find a family of exact solutions including pairs of Bright-Bright, Dark-Dark and Bright-Dark solitons in addition to solitary waves. We show that one can convert bright bound state onto a dark bound state in a two soliton solution by selectively finetuning the ...

متن کامل

Stability switching at transcritical bifurcations of solitary waves in generalized nonlinear Schrödinger equations

a r t i c l e i n f o a b s t r a c t Linear stability of solitary waves near transcritical bifurcations is analyzed for the generalized nonlinear Schrödinger equations with arbitrary forms of nonlinearity and external potentials in arbitrary spatial dimensions. Bifurcation of linear-stability eigenvalues associated with this transcritical bifurcation is analytically calculated. Based on this e...

متن کامل

Conditions and Stability Analysis for Saddle-Node Bifurcations of Solitary Waves in Generalized Nonlinear Schrödinger Equations

Saddle-node bifurcations of solitary waves in generalized nonlinear Schrödinger equations with arbitrary forms of nonlinearity and external potentials in arbitrary spatial dimensions are analyzed. First, general conditions for these bifurcations are derived. Second, it is shown analytically that the linear stability of these solitary waves does not switch at saddle-node bifurcations, which is i...

متن کامل

Analytical and Numerical Studies of Weakly Nonlocal Solitary Waves of the Rotation-Modified Korteweg-deVries Equation

A century ago, the Korteweg-deVries (KdV) equation was derived as a model for weakly nonlinear long waves propagating down a channel when cross-channel and depth variations are sufficiently weak. In this article, we study the steadily-translating coherent structures of a generalization of this equation, the Rotation-Modified Korteweg-deVries equation, which applies when Coriolis forces are sign...

متن کامل

Heteroclinic dynamics in the nonlocal parametrically driven nonlinear Schrödinger equation

Faraday waves are described, under appropriate conditions, by a damped nonlocal parametrically driven nonlinear Schrödinger equation. As the strength of the applied forcing increases this equation undergoes a sequence of transitions to chaotic dynamics. The origin of these transitions is explained using a careful study of a two-mode Galerkin truncation and linked to the presence of heteroclinic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002